
and bulk deformation;  l, d isplacement ;  A e, B e,  kinetic p a r a m e t e r s  of deformation;  a ' ,  S t e f a n - B o l t z m a n n  co-  
efficient; ~ ,  emp i r i ca l  coefficient; h, 7, d i f f e rence -g r id  s teps  over  the coordinate  and t ime.  Indices: 0, ini-  
tial; e, external  gas  flow; S, sur face ;  ch, chemical  ent ra inment ;  I, condensed phase (body); II, gas phase in 
mate r ia l ;  s, l aye r  number ;  Z, total;  BD, m, ED, beginning, max imum,  and end of decomposi t ion;  BP, EP,  be -  
ginning and end of plast ic  s ta te .  
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VARIATIONAL ESTIMATE OF THE EFFECTIVE GENERALIZED 

C O N D U C T I V I T Y  T E N S O R  OF A T W O - P H A S E  M E D I U M  W I T H  AN 

A N I S O T R O P I C  D I S T R I B U T I O N  OF P H A S E S  

V .  P .  K a z a n t s e v  UDC 536.24 

An inequality is found fo r  the effect ive genera l i zed  conductivity t ensor  of a two-phase  medium 
with an anisotropic  distr ibution of phases .  

There  a re  a large number  of calculat ions of the effect ive genera l i zed  conductivity of a two-phase  in-  
homogeneous medium; see for  example  [1-3]. The idea of a genera l i zed  conductivity der ives  f r o m  a local  
coupling of two vec tors  f ields (denoted by E and j) by a l inear  re la t ion  with the propor t ional i ty  f ac to r  dependent 
on the ma te r i a l  cha rac t e r i s t i c s .  In the absence of sou rces ,  one of the f ields will be potential ,  and the other  
solenoidal,  and the equations for  the spat ia l  dis t r ibut ion of fields will be given by 

rotE=O; divj=O; j=AE,  (1) 

where the genera l ized  conductivity will in genera l  be a t ensor  of the second rank.  In the p resen t  paper  we con-  
s ide r  the case  of a s c a l a r  A > 0 which is m o r e  often encountered in p rac t i ce .  

The se t  of equations (1) desc r ibes  p r o c e s s e s  of heat  conduction, diffusion, e l ec t r i ca l  conduction and a lso  
the e lec t r i c  field distr ibution in a d ie lec t r ic  and the magnet ic  field in a m a t e r i a l  with the magnet ic  p e r m e a b i l -  
ity differing f rom unity. In the pa r t i cu l a r  case of heat  conduction, E is the t e m p e r a t u r e  gradient  and ] is the 
heat  flux; then A will be the t he rma l  conductivity. 

Var ious  methods have been used to calculate  the effective conductivity.  The var ia t ional  method has  been 
used in only a re la t ive ly  few cases ,  as can be seen  in the rev iews  [1-3]. However ,  var ia t ional  methods have 
seve ra l  advantages which show considerable  p r o m i s e .  For  example we show that the var ia t ional  inequality 
obtained here  yields not only an approx imate  effect ive genera l ized  conductivity but a lso  allows calculat ion of 

K]~-asn-oyarsk State un ive r s i t y .  T rans l a t ed  f r o m  Lazhenerno-Fiz icheski i  Zhurnal ,  Vol. 45, No. 3, pp. 480- 
487, September ,  1983. Original a r t ic le  submit ted  April 27, 1982. 
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Fig. 1. Model used in calculation of the effective 
genera l ized  conductivity tensor .  

the e r r o r .  The advm~tage of the var ia t ional  method is that the inequality can be improved at any step of the 
calculat ion by choosing more  exact t r ia l  functions; this in turn is done by using more  complete information 
on the spatial  distr ibution of the inhomogeneit ies.  

The var ia t ional  method does have a difficulty in that some of its resu l t s  a re  not explicit ly interpretable  
physical ly.  F o r  example,  it is difficult to give a physical  in terpreta t ion to the quantity A 0 introduced in [4, 5] 
in a var ia t ional  calculat ion based on a plane-wave expansion of the fields.  Also in [6, 7] where a singular ap-  
proximat ion was studied, an analogous p a r a m e t e r  was called the genera l ized  conductivity of the re fe rence  
medium, which does not c lar i fy  ve ry  much. 

The t rea tment  given here  allows an extension of the resul ts  of [4] to an anisotropic spatial  distribution 
of phases ,  and also gives a simple physical  in terpreta t ion of the p a r a m e t e r  A 0 used in [4-7]. Unlike [4, 5], 
we donot  uase a plane wave expansion of the fields but base our t r ea tment  c~a the model developed in [8-10]. 

In [8] it was proposed to calculate the effective p a r a m e t e r s  for  a medium with isotropic spherical  in- 
clusions of another  phase s ta t is t ica l ly  dis t r ibuted in it, by considering a sphere  of inhomogeneous mater ia l  
p laced in a medium with ma te r i a l  constants equal to those of the mat r ix .  Changing the fo rm of this model some-  
what, we cons ider  an iahomogeneous sphere  in a medium with a genera l ized  conductivity A 0 (see Fig. 1) a s -  
suming that the radius of the sphere  is much l a rg e r  than the charac te r i s t i c  size of the inhomogeneit ies.  Then 
according to the definition of the effective genera l ized  conductivity tensor ,  the average field charac te r i s t i c s  
in the medium will be unchanged ff we replace  the inhomogeneous sphere  by a homogeneous one with genera l -  
ized conductivity t ensor  :~e. One of these  average  cha rac t e r i s t i c s  will be the polar izabi l i ty  tertsor & f rom the 
e lec t ros ta t i cs  of d ie lec t r ics  [11]. It couples the dipole moment  p of the sphere  placed in a uniform field E 0 with 
the vec to r  E 0 by" the relat ion 

p = ~ .  Eo, (2) 

where  the dot between tensors  of different  rank means a contract ion over  the pa i r  of inner indices.  In p a r -  
t icular ,  the polar izabi l i ty  t ensor  of the uniform sphere  shown in Fig. 1 is given by 

1 ~ e) 1 2e) -1 (3) ~  

The calculation of ~ is done using the set  of equations (1). Two approaches  are  possible,  using e i ther  the 
s ca l a r  potential  defined by E = E 0 - Vqo or  the vec to r  potential  defined by ] =A0(rot A + E0). In [9] these two 
approaches were studied by variat ional  methods and the following inequalities were obtained for  the po la r i za -  
bility tensor  of an inhomogeneous sphere:  

1 ( / A \  1) E~V+W(~); (4) 2nEo'a" Eo ~ ~ ~ \  Ao / - -  

( 2 n E ~ 1 7 6  - \ A / / 

[__I A A __I)vq>Eo]dV; (5) 
W ( q ~  2 Ao(V~)2--(A- ~- 

W (A)= ~ [ (1-- ~ ) E~176 "A~ (r~ ] , 2A (6) 
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The integrat ion in (5) and (6) goes over  all space  ~. The s c a l a r  potential  on the r ight-hand side of (5) can be 
r ep re sen t ed  as an integral  

over  the volume of the sphere .  
f o r m  

(r) = [ ( r - -  r ') .P (r') dV' (7) 
v Ir - - r ' [  3 

The vec to r  potential  on the r ight -hand side of (6) can be r ep re sen ted  in s i m i l a r  

A (r) = y p (r') X (r - -  r') dV' (8) 
Ir - -  r'l ~ 

where the vec tor  funct ion is in tegrated over  the vo lume of the sphere.  It is natura l  here to in te rp re te  P ( r  t) 
as the polar iza t ion  vec to r  inside the sphere ,  i .e. ,  as the density of dipole moment  sources  of fields E and j .  
As shown in [9], the inequality (4) is conver ted  into an equali ty for  the actual polar iza t ion  dis t r ibut ion inside 
the sphere .  In the var ia t ional  method, we cons ider  P ( r ' )  in (7) and (8) to the some t r ia l  functions.  

Let  the lower  &i and upper  &s bounds for  the polar izabi l i ty  t en so r  of the sphere  occur  fo r  values  of A 0 
which we call A0i and A0s. Then f r o m  the inequali t ies 

~, < R ~ (h~--  A0~e). (h~ + 2A0~)-'; 

&~ > R3(s - -  A0) ) .(A~ + 2A0d)-~, 

obtained f rom (3), there  follows an inequality for  the effect ive genera l ized  conductivity t ensor  

( (9) ( + 2 4  .Aog + 2 - 1 ~i) -1 . ^ 1 - - 1 ,  

where  a t en so r  inequality h > 1~, as understood f r o m  m a t r i x  theory [12], is equivalent to the s ta tement  that  the 
t en so r  a - D  is posi t ive definite. 

In o rde r  to calculate a s and ~i, we choose as tes t  functions fo r  ~v and A superpos i t ions  of the f ields c o r -  
responding to uniformly polar ized  regions V i and V2 occupied by the two dif ferent  phases .  In o rde r  to be definite 
we take the genera l i zed  conductivity of the second phase to be l a r g e r  than that of the f i r s t ,  A 2 >A1. In the d i s -  
cuss ion below we will use  extensively  the idea of the depolar iza t ion tensor  of an a r b i t r a r y  region of space ,  f i r s t  
introduced in [10]. F o r  example ,  in region V 1 the depolar iza t ion  t ensor  is given by e i ther  of the two following 
equivalent  fo rmu la s  

r - -  r______~' dVdV' -= ~ dSdS' (10) 
4nV1NI= V [ r _ r , l  ~ o ]r--rr l  

V1 

In the f i r s t  equali ty the integrat ion is c a r r i e d  out twice over  the volume V l, while in the second equality,  it is 
c a r r i e d  out twice over  the sur face  bounding V 1. 

We cons ider  the p rope r t i e s  of the depolar iza t ion  t enso r  which follow f r o m  the definition (10). Since the 
t r a ce  of the t enso r  under the f i r s t  int;agral in (10) is equal to 4~5 (r - r ' )  it is obvious t,hat the t r a ce  of NI is 
equal to unity. It can a lso  be seen  f r o m  (10) that  ~ql is s y m m e t r i c ,  and the product  P1 "N1 "I~1 di f fers  f r o m  the 
e lec t ros ta t i c  energy  of a uniformly po la r i zed  region V 1 only by a posi t ive  constant factor ;  this  shows explici t ly 
that  ~qi is posi t ive definite. Hence bT l has all  of the p rope r t i e s  of a depolar iza t ion  t ensor  as defined in the usual 
way for  an el l ipsoid [11], t he re fo re  (10) can be cons idered  as a genera l iza t ion  of the concep t  of depolar iza t ion  
t ensor  to a region of space  of a r b i t r a r y  shape.  F o r  a space with the s y m m e t r y  of a cube, N i = t / f i ;  this value 
a lso  resu l t s  when we average  ~ql over  a s ta t i s t i ca l ly  i sot ropic  dis tr ibut ion of phase 1. 

The functionals (5) and (6) a re  cs with the help of the t r i a l  functions given above and the following 
equations 

4 n  
( V% ) = ---f- flPl; ( V% ) v, = 4nNl.Pl; (11) 

8 ~  . p 
( rotA1 ) ~ --~--tl 1; ( rotA1 ) v, - 4~(e --NI) 'P1,  (12) 
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where  ~l and A i are  de termined  by the integrals (7) and (8) and cor respond to the potentials of a uniformly 
polar ized  region Vi. Potentials  qo 2 and A 2 will sa t is fy  identical re la t ions ,  where ~0 2 and A 2 are  potentials 
c rea ted  by a uniformly polar ized  region occupied by phase 2, They can be obtained f rom (11) and (12) by 
simply replacing subscript 1 and 2. 

Functional (5) can be expressed  in the fo rm 

2 

i : ,  - 2  vq~ - -  Eo �9 Vq~/v, V,. (13) 

Suppose k i = Ai /A  0 < 1, fo r  this case it is sufficient to choose A 0 >A 2. Then the f i r s t  inequality of (4) is 
weakened if in place of W(~0) on the r ight-hand side we put 

2 
l 

w* (~p) = w qp) + y ~ (1 - -  ;v,) ( (v~p - -  < wp > v,) ~ > vy , ,  
t = l  

which is larger than W(~o) because X i < 0. From (13) we have 

2 [ ( )] 
g,(q~)=~<vq~>v~ 2ap~+(1-~ , )  Co- T <vqoSv, v,, 

~ = i  

(14) 

and f r om (ii) we find 

1 ) 
4-7 < wo > v, = ~-p~ + 7 e -  }~, �9 p,.; 

1 ( 1 ^ 
4--~- <Vq~> G=N2 '  P2+ T e - - } ~ 2 )  "p*' 

/ 

(15) 

so that W* (~o) can be r ep resen ted  as a quadratic fo rm in the polar iza t ion vectors  Pi  of the phases .  The best  
upper  bound &s will be obtained when W*(~o) reaches  a minimum: 

1 
2aEo.~,.Eo = -~- <~ , - -1 )  E~V+minW*(q@ (16) 

e~ 

In calculating &i it is convenient to use a s imi l a r  represen ta t ion  for  W(A). In this case one must  choose 
A 0 less than A 1 so that now l i > 1. The formulas  corresponding to (14), (15), and (16) will be 

2 [( 1 ) ] W * ( A ) = ~  <roth>v,.  I - -  eo+--~(roth>v~ --2aP, V,; (17) 

1 (e--?Cl) .Pl  - -  ( 1 e 4--~-~ < rotA > v, -= --3 _ ~r (18) 

l _ _ ( r o t A ) v o = _ _ (  1 ^ 4a _ -~- e - -  N2)'P, q- (e N2)'P2; 

1 1 N  EoV + max W* (A). (19) 2 :mo .a , -eo  = T x / 1 -  ~ / ~, 

Solving f o r  ~s f rom (14) through (16) (for A 0 > A 2) and solving for  ~ i  f rom (17) through (19) ( for  A 0 < A 1) and 
then substituting the resul t ing values into inequality (9), we find the following inequality f o r  Ae: 

A, (Ao)[Ao<a, < .~ < A, (Ao)]A~:.&. (20) 

In the special  case when A 0 =A2, 

^ V, ( A2 
~' = -Ta-a - & - -  & e + }r (21) 

and when A o =A i, 
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(z~ = Ve A~ e + N2 (22) 
4n As -- A1 

In this case (20) takes the form 

' 1 
Alia@ f2 [(ns~-~A l i .  f23 )e-~ fi]2]-} ~'~ae~a2 {g@ fl[(~l__A s 3 ] J '1 " 

For  the effective general ized conductivity tensor of a two-phase medium in two dimensions* we can re -  
peat nearly exactly the above discussion for the three-dimensional  case, finally obtaining the two-dimensional 
analogs of (21) through (23): 

a , =  V1 ( A~ ^ /~1) -1 (24) 
2-~ A1--Ase+ 

v= ( & ?+~s) -~. 
% := ~ A2--A I 

(25) 

where V i and V 2 are two-dimensional volumes (areas) and fl and f2 are the volume fractions occupied by phases 
1 and 2. The depolarization tensors  N1 a n d  ~2 are positive-definite second rank tensors ,  symmetr ic  and with 
unit t race.  They can be represented by 2 • 2 mat r ices  and calculated using formulas  analogous to (10). For  
example, for i~ 1 we have 

r -- r' i 2aVjgl = V [~-----_ r'[ z dVdV' = -- (ln Jr-- r' [) dSdS', (27) 
V~ 

where as in (10) the integration in the f i r s t  integral goes twice over V 1 and in the second twice over the surface 
bounding V1; in the lat ter  integral dS is a vector line element pointing in the direction of the outward normal  to 
the surface.  

Note that the depolarization tensors ,  which are character is t ic  of an anisotropic distribution of phases,  
are introduced in the solution of the problem in a natural  way. When the phases have isotropic distributions 
we have ~I i = N2 = 1/ae in three  dimensions and N1 = N2 = 1/2~ in tWO dimensions,  and (23) and (26) reduce to 

Al l  1--3fz (fs-,- 2Al~5~Al__A~ ) - ' ] ~ A e ~ A ~ [  1-3f1([1-}- 2As-}-A1As__A1 ) -1 ] . ,  (28) 

AlI1--2f2(fsq-Alq- Asl-' -~-.As[l--2[l(fl-+ ] (29) 

Inequality (28) is the same as obtained in [4] by other methods. Hence (23) generalizes the resul ts  of [4] to 
the case where the distribution of phases is anisotropic.  The paramete r  A 0 as used by us can be given an 
explicit physical interpretation; it is the general ized conductivity of a medium into which is placed an in- 
homogeneous sphere.  Equations (21) and (22) can be used to es t imate  the polarizabili ty of part icles of complex 
shape. These est imates  are important in problems involving the scat ter ing of electromagnetic  waves f rom 
small  dielectric part icles [10], however we do not discuss them in detail here.  Our resul ts  unify problems which 
at f i r s t  glance appear to be very different by providing a single approach to their  solution. 

The basic difficulty in applying inequalities (23) and (26) in practice is the complexity of calculating the 
depolarization tensor N 1. The depolarization .tensor N2 can be expressed in t e rms  of N 1 using the relation 

h (e-  3N3 = h (e-- 3~s) (30) 

* This case occurs in calculations of effective parameters in thin films, for example. 
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in t h r ee  dimensions and 

f ,  - 2 2) (31) 

in two dimensions. The general properties of the depolarization tensor have been discussed above, We add 
here  that one can often use  the s y m m e t r y  of the region V 1 to de te rmine  the d i rec t ion of the pr incipal  axis of 
N1 without actual ly doing the in tegra ls  (10) or  (27). F o r  example  if V 1 has a s y m m e t r y  axis higher  than second 
order ,  this axis will be one of the pr inc ipa l  axes and the other  two mutual ly  perpendicu la r  pr incipal  axes can 
be chosen a r b i t r a r i l y  in the plane pe rpend icu la r  to the s y m m e t r y  axis .  F o r  a c i r c u l a r  cyl inder  of finite length, 
the pr incipal  value of the depolar iza t ion  t enso r  cor responding  to the axis along the cyl inder  can be found f rom 
the re la t ion  

1 (32) N~ = -:-" [ r  (0)--  r (y)], 
y 

where  

4 
r (y) = ~ (1 + y~)l/~ [y~/((k) + (1 - -  g~) e (k)] - -  y. 

Tables  of the complete  el l ipt ic  in tegra ls  K(k) and E(k) are  given in [13]. The other  two pr incipal  values a re  
N2 = N ~  = ~/2(1 - N t ) .  

The pr incipal  axes  of the depolar iza t ion t enso r  for  a rectangle  will be para l l e l  to the s ides  of the r e c -  
tangle.  The pr incipal  values a re  

2 l [ z ( ' )  i ] 
N b = - - a r c t g z +  In 1 +  - - - - l n ( l + z  2) 

and N a = 1 - N b, where  N b, Na are  the pr inc ipa l  values  in the b and a d i rec t ions ,  respec t ive ly .  

The above expres s ions  for  the depolar iza t ion  t enso r s  of a cyl inder  and rectangle  can be used d i rec t ly  
to e s t ima te  the effect ive genera l i zed  conductivity t enso r  of a medium with a smal l  concentra t ion of pa ra l l e l  
identical  finite c i r cu l a r  cyl inders  or  rec tangles  (in the two-dimens iona l  case) .  A sin~ple calculat ion shows 
that  at low concentra t ions  the depolar iza t ion  t en so r  of a region occupied by inclusions differs  f rom the de-  
po la r iza t ion  t enso r  of an isola ted inclusion by a quantity propor t iona l  to the volume concentrat ion,  for  example 
fl in (23) and (26). One then expands these  inequali t ies in powers  of I 1 and keeps the l inear  t e r m  in fl. N1 is 
r ep laced  by the depolar iza t ion  t ensor  of a cy l inder  for  three  dimensions  or  by that for  a rectangle  in two di-  
mens ions .  

NOTATION 

E, potential  vec t o r  field; j ,  solenoid vec to r  field; A, genera l ized  conductivity; A o, genera l ized  conductivity 
of a medium containing a nonuniform sphere ;  p ,  total  dipole moment  of sources  inside the sphere ;  &, p o l a r -  
izabil i ty t enso r  of the sphere ;  E o, uniform potential  f ield in the medium in the absence of the sphere ; /~e ,  e f -  
fective genera l i zed  conductivity t ensor ;  R, radius  of the sphere ;  ~, unit t ensor ;  V, gradient  opera tor ;  ~, the 
potential  of E; A, the vec to r  potential  of j; ( ) ,  operat ion of averaging  over  the volume of the sphere;  V, volume 
of the sphere ;  ~, all space;  r ,  radius  vector ;  P ,  polar izat ion;  07 i and &s, lower  and upper  bounds of the p o l a r -  
izabil i ty t en so r  of the sphere ;  Aoi and Aos , values of A 0 corresponding to &i and &s; Vi, fi = V i / V ,  Ai, Pi, fqi' 
volume,  volume fract ion,  genera l i zed  conductivity,  polar izabi l i ty ,  and depolar iza t ion t enso r  of the i - th  phase;  
i = 1, 2; ( )V:i' operat ion of averag ing  over  the volume V i, 6 (r), D i rac  delta function; k i = A i /A  o; k = A / A  o; 
N i, N 2, N 3, p r inc ipa l  values  of the depolar iza t ion  tensor ;  y,  ra t io  of the hal f - length  of the cyl inder  to i ts  radius;  
K(k) and E(k), complete  el l ipt ic  in tegra ls  with modulus k = (1 +y2)-I/2; Na and N b, pr inc ipa l  values  of the de -  
po la r iza t ion  t en so r  fo r  a rec tangle  cor responding  to pr incipal  axes d i rec ted  along s ides a and  b, z = a / b .  
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V A R I A T I O N A L  M E T H O D  OF D E T E R M I N I N G  T H E  H Y D R O D Y N A M I C  

P A R A M E T E R S  IN C O N V E C T I V E  H E A T - T R A N S F E R  P R O B L E M S  

FOR SEPARATION FLOWS IN CHANNELS 

G. F .  M a l i k o v  UDC 532.542:536.242 

A method is given for  computing viscous fluid flows in a channel by using a variational fo rmula -  
tion. 

The application of i teration methods [1-6] to compute the convective heat t r ans fe r  in a separat ion flow 
in a channel requires  substantial expenditures of machine time, which is associated mainly with the slow 
convergence of the i teration p rocess  for  the hydrodynamic equations. 

Utilization of direct  methods, including va r i a t iona l  results  in a significant reduction in the computation 
time, as a rule, although it also complicates the algori thm for  the solution. 

A certain hybrid scheme is proposed in this paper  that combines f ini te-difference and var ia t ional -d i f fer -  
ence computation schemes,  which turn out to be relat ively simply in real izat ion on an electronic computer  
while at the same time sufficiently economical  in the sense of the computation t ime. 

The scheme is developed in application to specific cases  of the flow in cylindrical  or plane channels be-  
hind a sudden expansion and is based on an explicit method for  solving all equation in the longitudinal (cruising) 
coordinate x and an implicit method in the t r ansve r se  coordinate y. 

A feature of the method is that the solution is sought in the form u = u  + 6u; v =~  + 6v, where ~ is the f i rs t  
approximation obtained f rom (1) by the factorizat ion method, ~ is determined f rom the continuity equation (3), 
6u, 5v a re  the refining correc t ions  obtained from the condition of minimum work of the hydrodynamic forces  
on a finite set  of closed contours (elosedness of the contour permi ts  elimination of the p re s su re  f rom a number  
of unknowns). 

The method mentioned permits  obtaining a "good" solution more  rapidly for the problem under cons idera-  
tion than in [1-5], say, because of the abrupt  reduction in the number  of i terat ions typical for  variational meth-  
ods. At the same time, such a combined approach is s impler ,  and (in this case) more  economical  than the ap-  
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