and bulk deformation; I, displacement; Ag, By, kinetic parameters of deformation; ¢', Stefan—Boltzmann co-
efficient; », empirical coefficient; h, 7, difference-grid steps over the coordinate and time. Indices: 0, ini-
tial; e, external gas flow; S, surface; ch, chemical entrainment; I, condensed phase (body); IL, gas phase in
material; s, layer number; Z, total; BD, m, ED, beginning, maximum, and end of decomposition; BP, EP, be-
ginning and end of plastic state.
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VARIATIONAL ESTIMATE OF THE EFFECTIVE GENERALIZED
CONDUCTIVITY TENSOR OF A TWO-PHASE MEDIUM WITH AN
ANISOTROPIC DISTRIBUTION OF PHASES

V. P. Kazantsev UDC 536.24

An inequality is found for the effective generalized conductivity tensor of a two-phase medium
with an anisotropic distribution of phases.

There are a large number of calculations of the effective generalized conductivity of a two~phase in-
homogeneous medium; see for example [1-3]. The idea of a generalized conductivity derives from a local
coupling of two vectors fields (denoted by E and j) by a linear relation with the proportionality factor dependent
on the material characteristics. In the absence of sources, one of the fields will be potential, and the other
solenoidal, and the equations for the spatial distribution of fields will be given by

1ot E = 0; divj = 0; j = AE, oy

where the generalized conductivity will in general be a tensor of the second rank, In the present paper we con-
sider the case of a scalar A > 0 which is more often encountered in practice.

The set of equations (1) describes processes of heat conduction, diffusion, electrical conduction and also
the electric field distribution in a dielectric and the magnetic field in a material with the magnetic permeabil-
ity differing from unity. In the particular case of heat conduction, E is the temperature gradient and j is the
heat flux; then A will be the thermal conductivity.

Various methods have been used to calculate the effective conductivity. The variational method has been
used in only a relatively few cases, as can be seen in the reviews [1-3]. However, variational methods have
several advantages which show congiderable promise. For example we show that the variational inequalify
obtained here yields not only an approximate effective generalized conductivity but also allows calculation of

Krasnoyarsk State University. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 45, No. 3, pp. 480~
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Fig. 1. Model used in calculation of the effective
generalized conductivity tensor,

the error. The advantage of the variational method is that the inequality can be improved at any step of the
calculation by choosing more exact trial functions; this in turn is done by using more complete information
on the spatial distribution of the inhomogeneities.

he variational method does have a difficulty in that some of its results are not explicitly interpretable
physically, For example, it is difficult to give a physical interpretation to the quantity A ; introduced in [4, 5]
in a variational calculation based on a plane-wave expansion of the fields. Also in [6, 7] where a gingular ap-
proximation was studied, anh analogous parameter was called the generalized conductivity of the reference
medium, which does not clarify very much.

The treatment given here allows an extension of the results of [4] to an anisotropic spatial distribution
of phases, and also gives a simple physical interpretation of the parameter A, used in [4-7]. Unlike [4, 5],
we donot uase a plane wave expansion of the fields but base our treatment on the model developed in [8-10].

In [8] it was proposed to calculate the effective parameters for a medium with isotropic spherical in-
clusions of another phase statistically distributed in it, by considering a sphere of inhomogeneous material
placed in a medium with material constants equal to those of the matrix. Changing the form of this model some-
what, we consider an inhomogeneous sphere in a medium with a generalized conductivity A, (see Fig. 1) as-
suming that the radius of the sphere is much larger than the characteristic size of the inhomogeneities. Then
according to the definition of the effective generalized conductivity tensor, the average field characteristics
in the medium will be unchanged if we replace the inhomogeneous sphere by a homogeneous one with general-
ized conductivity tensor Ae. One of these average characteristics will be the polarizability tensor & from the
electrostatics of dielectrics [11], If couples the dipole moment p of the sphere placed in auniform field E, with
the vector E, by the relation

p =&‘E0, (2)

where the dot between tensors of different rank means a contraction over the pair of inner indices. In par-
ticular, the polarizability tensor of the uniform sphere shown in Fig. 1 is given by

. 1o« =\ /1 4 AW
= R3[| ——A,—e|.[—A, Qe) ) (3)
w=R ( Ao ) ( AT

The calculation of & is done using the set of equations (1), Two approaches are possible, using either the
scalar potential defined by E = E; — V¢ or the vector potential defined by j =A ((rot A + Ey). In [9] these two
approaches were studied by variational methods and the following inequalities were obtained for the polariza-
bility tensor of an inhomogeneous sphere:

QnEO-&-E0<—21—(<TA- _I)EOVLW(CP) (4)
2Ey-&-Ey > 71( AT — EOV—LW(A)
W (g) = f[%—A‘—v (= )WE]dV; 6)
W (A) = [( ) ] . ®)
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The integration in (5) and (6) goes over all space Q. The scalar potential on the right-handside of (5) can be
represented as an integral

—r)-pP ! ,
o =1 r—r)-P@) o )
v fr—rf
over the volume of the sphere. The vector potential on the right-hand side of (6) can be represented in similar

form

A(r) = ) PEOYXE—T) (8)
fr—r'?

where the vector function is integrated over the volume of the sphere. It is natural here to interprete P(x'")
as the polarization vector inside the sphere, i.e., as the density of dipole moment sources of fields E and j.
As shown in {9], the inequality (4) is converted into an equality for the actual polarization distribution inside
the sphere, In the variational method, we consider P(x') in (7) and (8) to the some trial functions.

Let the lower &;j and upper &g bounds for the polarizability tensor of the sphere occur for values of Ay
which we call A and Ayg. Then from the inequalities

@ <R*(Ay— Agi @)+ (A, -+ 2Ag8) %
Gy > R3(A, — Nget)- (A, + 200,0)71,

obtained from (3), there follows an inequality for the effective generalized conductivity tensor

A N S T T T a2 AN /a1 A\
Ml g (s b (A () @
where a tensor inequality @ > b, as understood from matrix theory [12], is equivalent to the statement that the
tensor @ — b is positive definite.

In order to calculate g and oy, we choose as test functions for ¢ and A superpositions of the fields cor-
responding to uniformly polarized regions V; and V, occupied by the two different phases. In order to be definite
we take the generalized conductivity of the second phase to be larger than that of the first, Ay >A4. In the dis-
cussion below we will use extensively the idea of the depolarization tensor of an arbitrary region of space, first
introduced in [10]. For example, in region V, the depolarization tensor is given by either of the two following
equivalent formulas

4oV, i, — XV r—=r gy - (B (10)
r—r'p r—r]

In the first equality the integration is carried out twice over the volume V,, while in the second equality, it is
carried out twice over the surface bounding V,.

We consider the properties of the depolarization tensor which follow from the definition (10). Since the
trace of the tensor under the first integral in (10) is equal to 476 (r — r') it is obvious that the trace of N, is
equal to unity, I can also be seen from (10) that N1 is symmetric, and the product P, - N1 P, differs from the
electrostatic energy of a uniformly polarized region V, only by a positive constant factor; this shows explicitly
that 1'(11 is positive definite. Hence N1 has all of the properties of a depolarization tensor as defined in the usual
way for an ellipsoid [11], therefore (10) can be considered as a generalization of the concept of depolarization
tensor to a region of space of arb1trary shape. For a space with the symmetry of a cube, N1 1/3e, this value
also results when we average N1 over a statistically isotropic distribution of phase 1.

The functionals (5) and (6) are calculated with the help of the trial functions given above and the following
equations

4in "
(Vo) rThPl; (Y01 ) v, = 4nilN, -Py; 11)

8 - .
(1otA; ) = —3“— FiPy (rotA, Yy, = dn (e — Ny)-Py, 12)
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where ¢, and A; are determined by the integrals (7) and (8) and correspond to the potentials of a uniformly
polarized region V,. Potentials ¢, and A, will satisfy identical relations, where ¢, and A, are potentials
created by a uniformly polarized region occupied by phase 2, They can be obtained from (11) and (12) by
gimply replacing subscript 1 and 2.

Functional (5) can be expressed ih the form
2

W(p) = 2 2P yo + (A -1)( Ve — E) V(p>ViVi. (13)

i=1

Suppose A; = Aj /Ay < 1, for this case it is sufficient to choose A, > A,. Then the first inequality of (4) is
weakened if in place of W(¢) on the right-hand side we put

2 |
2 (14 (o= Vo)) oV

1
W (g) =W+ -,

which is larger than W(y) because Aj< 0. From (13) we have

21 \
W () = <v<p>vi[2npi+(1—m> (Eo——; (99, )]Vi, (14)
i=Il
and from (11) we find

o (Vv =Wy P1+(-e~—Nl) Py
3 4 (15)
-“<V<P>v2 Ny- Pg+<?le"_1§/z>.r>l,

so that W* (¢) can be represented as a quadratic form in the polarization vectors P; of the phases. The best
upper bound &S will be obtained when W*(¢p) reaches a minimum:

. 1
2E; 6 By = = (h— 1) B}V + min W ). (16)
£y

In calculating ¢y it is convenient to use a similar representation for W(A). In this case one must choose
A less than A so that now A; > 1. The formulas corresponding to (14), (15), and (16) will be

2
W @A) =3 <rotA>Vi.[(1— ;—) (E0+_;<rot/\>vi) _ani}vi; (17)
i=1 i
L CrotAyy = ¢—Ry-py -(—léfﬂh>-P2; (8)
4z 2
1 1 - .
——-—(rotA)Vzrz—(—3~N2)~P1+(3—N2)-P2;
C 3
- 1 -
2nE,-a;-Ey = —2~<1 — 'x—> E3V + rr;?x W* (A). (19)

Solving for &g from (14) through (16) (for A, > A,) and solving for wj from (17) through (19) {for Ay < Ay and
then substituting the resulting values into mequahty (9), we find the following inequality for Ae

Ay ( Adla<a, < Ae <A (A (20)
In the special case when A; = A,
" vy A, -~ s
s = e+ Nt (21
s 45t ( A — A, e+ Ny, )

and when A =Ay,
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G = -V <hA_1_“e+jvz)_‘ , (22)
A,

In this case (20) takes the form

AI{EH‘;[(AZ%L/\_I”%)E*M]_] ;gﬁxe A2{e+f1{(ﬁ %)"ejwi/lr}. (23)

For the effective generalized conductivity tensor of a two-phase medium in two dimensions* we can re-
peat nearly exactly the above discussion for the three-dimensional case, finally obtaining the two-~dimensional
analogs of (21) through (23):

ozs:i( Ay 2:+N1)_'; (24)
21 Al———Az
A‘::__V_?_ _A_IA Y —1.
T o (A2~A16TN2) ’ (25)
> A __fz_" ‘A 4 A Iz A, AR
Al{e+f2[(A2~Al 5 )8+N2] }\<\Ae<i\:{€+f1[(mf7)e+1v1} }, (26)

where V; and V, are two-dimensional volumes (areas) and f; and f; are the volume fractions occupied by phases
1 and 2. The depolarization tensors N1 and N2 are positive-definite second rank tensors, symmetric and with
unit trace. They can be represented by 2 x 2 matrices and calculated using formulas analogous to (10). For
example, for N; we have

2aV, N, = jv l——? avdy’ = — j (Injr— r'}) dSdS’, (27
r—r

where as in (10) the integration in the first integral goes twice over V, and in the second twice over the surface

bounding V; in the latter integral dS is a vector line element pointing in the direction of the outward normal to

the surface.

Note that the depolarization tensors, which are characteristic of an anisotropic distribution of phases,
are mtroduced in the solution of the problem in a natural way. When the phases have isotropic distributions

we have N, =N, =1/% in three dimensions and N, =N, =1/,© in two dimensions, and (23) and (26) reduce to
LA+ Ay ! 2A, 4+ A, V1
A 1—«3f2/,,+_1‘___1_) <A, <A [1_3 ( 2+ 1) . (28
1[ \f~ 7 A — A, = =2 _ 1 /:1+ A — A, N )
A+ B\ \ A+ Ay
A 1-2,( At ! _%j }<Ae\<A[1_.2 ( 1+ AN ] %
1[ fz fz—l—Al_Az, == 2 f1 fl +A2——A1 (29)

Inequality (28) is the same as obtained in {4] by other methods. Hence (23) generalizes the results of [4] to

the case where the distribution of phases is anisotropic. The parameter A, as used by us can be given an
explicit physical interpretation; it is the generalized conductivity of a medium into which is placed an in-
homogeneous sphere. Equations (21) and (22) can be used to estimate the polarizability of particles of complex
shape. These estimates are important in problems involving the scattering of electromagnetic waves from
small dielectric particles [10], however we do not discuss them in detail here. Our resulis unify problems which
at first glance appear to be very different by providing a single approach to their solution.

The basic dlfﬁculty in applying inequalities (23) and (26) in practice is the complex1ty of calculating the
depolarization tensor Nl The depolarization tensor Nz can be expressed in terms of N1 using the relation

f1(6— 3Ny = f (e — 3N,) (30)

* This case occurs in calculations of effective parameters in thin films, for example.
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in three dimensions and
fl(AefQJ\hfl "—_fz(;—QNz) (31)

in two dimensions. The general properties of the depolarization tensor have been discussed above, We add
here that one can often use the symmetry of the region V; to determine the direction of the principal axis of

N1 without actually doing the integrals (10) or (27). For example if V; has a symmetry axis higher than second
order, this axis will be one of the principal axes and the other two mutually perpendicular principal axes can
be chosen arbitrarily in the plane perpendicular to the symmetry axis. For a circular cylinder of finite length,
the principal value of the depolarization tensor corresponding to the axis along the cylinder can be found from
the relation

Ny = —;—@(0)_@(;/)1, (32)
where
4 »
D)= o1+ PP 1RK (B) 4 (1— 0?) E (B)] —

Tables of the complete elliptic integrals K(k) and E(k) are given in [13], The other two principal values are
NZ = N3 = 1/2(1 - Ni)

The principal axes of the depolarization tensor for a rectangle will be parallel to the sides of the rec-
tangle. The principal values are

Nb=—~2—arc’tgz+L[zln(l+ —1—)—“*1— 1n(l+22)J
) 2% 22 z

and N, =1 — Nj,, where Np,, N, are the principal values in the b and « directions, respectively.

The above expressions for the depolarization tensors of a cylinder and rectangle can be used directly
to estimate the effective generalized conductivity tensor of a medium with a small concentration of parallel
identical finite circular cylinders or rectangles (in the two-dimensional case)., A simple calculation shows
that at low concentrations the depolarization tensor of a region occupied by inclusions differs from the de-
polarization tensor of an isolated inclusion by a quantity proportional to the volume concentration, for example
fy in (23) and (26). One then expands these inequalities in powers of f; and keeps the linear term in £y N1 is
replaced by the depolarization tensor of a eylinder for three dimensions or by that for a rectangle in two di-
mensions.

NOTATION

E. potential vector field; j, solenoid vector field; A, generalized conductivity; A (, generalized conductivity
of a medium containing a nonuniform sphere; p , total dipole moment of sources ingide the sphere; &, polar-
izability tensor of the sphere; E, uniform potential field in the medium in the absence of the sphere; fxe, ef-
fective generalized conductivity tensor; R, radius of the sphere; %, unit tensor; V, gradient operator; @, the
potential of E; A, the vector potential of j; ( ), operation of averaging over the volume of the sphere; V, volume
of the sphere; ©, all space; r, radius vector; P, polarization; & and &g, lower a.nd upper bounds of the polar—
izability tensor of the sphere; A, and A g, values of A corresponding to 0‘1 and &gs Vi £ =Vi/V, Aj» Pis N >
volume, volume fraction, generalized conductivity, polarizability, and depolarization tensor of the i~th phase,

1 =1, 2; ( )ypoperation of averaging over the volume Vj, 6 (r), Dirac delta function; Aj; =Aj/Agp A =A/Ag
Ny, Ny, N,, principal values of the depolarization tensor; y, ratio of the half-length of the cylinder to its radius;
K(k) and E(k), complete elliptic integrals with modulus k = (1 +y3~1/% N, and Ny, principal values of the de-
polarization tensor for a rectangle corresponding to principal axes directed along sides @ and b, z =a/b.
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VARIATIONAL METHOD OF DETERMINING THE HYDRODYNAMIC
PARAMETERS IN CONVECTIVE HEAT-TRANSFER PROBLEMS
FOR SEPARATION FLOWS IN CHANNELS

G. F. Malikov UDC 532.542:536.242

A method is given for computing viscous fluid flows in a channel by using a variational formula-
tion,

The application of iteration methods [1-61 to compute the convective heat transfer in a separation flow
in a channel requires substantial expenditures of machine time, which is associated mainly with the slow
convergence of the iteration process for the hydrodynamic equations.

Utilization of direct methods, including variational, results in a significant reduction in the computation
time, as a rule, although it also complicates the algorithm for the solution.

A certain hybrid scheme is proposed in this paper that combines finite-difference and variational-differ-
ence computation schemes, which turn out to be relatively simply in realization on an electronic computer
while at the same time sufficiently economical in the sense of the computation time.

The scheme is developed in application to specific cases of the flow in cylindrical or plane channels be-
hind a sudden expansion and is based on an explicit method for solving all equation in the longitudinal (cruising)
coordinate x and an implicit method in the transverse coordinate y.

A feature of the method is that the solution is sought in the form u =u + 6u; v =V + 6v, where 1 is the first
approximation obtained from (1) by the factorization method, v is determined from the continuity equation (3),
éu, 6v are the refining corrections obtained from the condition of minimum work of the hydrodynamic forces
on a finite set of closed contours (closedness of the contour permits elimination of the pressure from a number
of unknowns).

The method mentioned permits obtaining a "good" solution more rapidly for the problem under considera-

tion than in [1-5], say, because of the abrupt reduction in the number of iterations typical for variational meth-
ods. At the same time, such a combined approach is simpler, and (in this case) more economical than the ap-
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